Published in

Volume 5B: Pipelines, Risers, and Subsea Systems, 2019

DOI: 10.1115/omae2019-95631

Links

Tools

Export citation

Search in Google Scholar

Study on the Design Method of Deepwater Steel Lazy Wave Riser

Proceedings article published in 2019 by Zhao Wang, Wei Qin, Xiaojie Zhang, Jiannan Zhao, Yong Bai
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The steel lazy wave riser has been used in deep-water oil and gas field development because it has good adaption to the movement of the upper platform and economic efficiency. The typical design criterion and design flow of steel lazy wave riser are introduced in this paper. The design method and the equivalence principle of distributed buoyancy modules are given. The formulas of equivalent hydrodynamic parameters are derived in this paper. The influences of distributed buoyancy modules (DBM) and the buoyancy factor on the configuration of the riser, the top tension, and the bending moment distribution are discussed and summarized. The distribution law of effective stress response along the pipe can be analyzed by dynamic analysis, and it provides reference for the global design of steel lazy wave riser.