Published in

Hindawi, Geofluids, (2019), p. 1-18, 2019

DOI: 10.1155/2019/9809458

Links

Tools

Export citation

Search in Google Scholar

Seismological and Hydrogeological Controls on New Zealand-Wide Groundwater Level Changes Induced by the 2016 Mw7.8 Kaikōura Earthquake

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The 2016 Mw7.8 Kaikōura earthquake induced groundwater level changes throughout New Zealand. Water level changes were recorded at 433 sites in compositionally diverse, young, shallow aquifers, at distances of between 4 and 850 km from the earthquake epicentre. Water level changes are inconsistent with static stress changes but do correlate with peak ground acceleration (PGA). At PGAs exceeding ~2 m/s2, water level changes were predominantly persistent increases. At lower PGAs, there were approximately equal numbers of persistent water level increases and decreases. Shear-induced consolidation is interpreted to be the predominant mechanism causing groundwater changes at accelerations exceeding ~2 m/s2, whereas permeability enhancement is interpreted to predominate at lower levels of ground acceleration. Water level changes occur more frequently north of the epicentre, as a result of the fault’s northward rupture and resulting directivity effects. Local hydrogeological conditions also contributed to the observed responses, with larger water level changes occurring in deeper wells and in well-consolidated rocks at equivalent PGA levels.