Published in

Nature Research, Communications Physics, 1(2), 2019

DOI: 10.1038/s42005-019-0171-3

Links

Tools

Export citation

Search in Google Scholar

Dynamically encircling exceptional points in a three-mode waveguide system

Journal article published in 2019 by Xu-Lin Zhang, Che Ting Chan ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDynamically encircling exceptional points (EPs) in non-Hermitian systems has attracted considerable attention recently, but all previous studies focused on two-state systems, and the dynamics in more complex multi-state systems is yet to be investigated. Here we consider a three-mode non-Hermitian waveguide system possessing two EPs, and study the dynamical encircling of each single EP and both EPs, the latter of which is equivalent to the dynamical encircling of a third-order EP that has a cube-root behavior of eigenvalue perturbations. We find that the dynamics depends on the location of the starting point of the loop, instead of the order of the EP encircled. Compared with two-state systems, the dynamical processes in multi-state systems exhibit more non-adiabatic transitions owing to the more complex topological structures of energy surfaces. Our findings enrich the understanding of the physics of multi-state non-Hermitian systems and may lead to the design of new wave manipulation schemes.