Published in

MDPI, Remote Sensing, 23(11), p. 2838, 2019

DOI: 10.3390/rs11232838

Links

Tools

Export citation

Search in Google Scholar

Quantifying Chlorophyll Fluorescence Parameters from Hyperspectral Reflectance at the Leaf Scale under Various Nitrogen Treatment Regimes in Winter Wheat

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chlorophyll fluorescence (ChlF) parameters, especially the quantum efficiency of photosystem II (PSII) in dark- and light-adapted conditions (Fv/Fm and Fv’/Fm’), have been used extensively to indicate photosynthetic activity, physiological function, as well as healthy and early stress conditions. Previous studies have demonstrated the potential of applying hyperspectral data for the detection of ChlF parameters in vegetation. However, the performance of spectral features that have been documented to estimate ChlF is not ideal and is poorly understood. In this study, ChlF parameters and leaf reflectance were collected in two field experiments involving various wheat cultivars, nitrogen (N) applications, and plant densities, during the growing seasons of 2014 to 2015 and 2015 to 2016. Three types of spectral features, including vegetation indices (VIs), red edge position (REP), and wavelet features, were used to quantify ChlF parameters Fv/Fm and Fv’/Fm’. The results indicated that traditional chlorophyll fluorescence vegetation indices (ChlF VIs), such as the curvature index (CUR) and D705/D722 were capable of detecting Fv/Fm and Fv’/Fm’ under various scenarios. However, the wavelet-based REP (WREP-S4) and the wavelet feature (WF) (704 nm, scale 4) yielded higher accuracy than other spectral features in calibration and validation datasets. Moreover, the bands used to calculate WREP-S4 and WF (704 nm, scale 4) were all centered in the red edge region (680 to 760 nm), which highlighted the role of the red edge region in tracking the change of active ChlF signal. Our results are supported by previous studies, which have shown that the red edge region is vital for estimating the chlorophyll content, and also the ChlF parameters. These findings could help to improve our understanding of the relationships among active ChlF signal and reflectance spectra.