Published in

Portland Press, Biochemical Journal, 15(476), p. 2235-2237, 2019

DOI: 10.1042/bcj20190368

Links

Tools

Export citation

Search in Google Scholar

New tools for an old question: dependence of ATP and bicarbonate for branched-chain keto acids oxidation

Journal article published in 2019 by Henver S. Brunetta ORCID, Graham P. Holloway ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Branched-chain keto acids (BCKA) metabolism involves several well-regulated steps within mitochondria, requires cofactors, and is modulated according to the metabolic status of the cells. This regulation has made it challenging to utilize in vitro approaches to determine the contribution of branched-chain amino acid oxidation to energy production. These methodological issues were elegantly addressed in a recent publication within the Biochemical Journal. In this issue, Goldberg et al. [Biochem. J. (2019) 476, 1521–1537] demonstrated in a well-designed system the dependence of ATP and bicarbonate for BCKA full oxidation. In addition, the utilized system allowed the authors to characterize specific biochemical routes within mitochondria for each BCKA. Among them, a quantitative analysis of the participation of BCKA on mitochondrial flux was estimated between tissues. These findings are milestones with meaningful impact in several fields of metabolism.