Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-35611-0

Links

Tools

Export citation

Search in Google Scholar

Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA method of fabricating multilayer focusing mirrors that can focus X-rays down to 10 nm or less was established in this study. The wavefront aberration induced by multilayer Kirkpatrick–Baez mirror optics was measured using a single grating interferometer at a photon energy of 9.1 keV at SPring-8 Angstrom Compact Free Electron Laser (SACLA), and the mirror shape was then directly corrected by employing a differential deposition method. The accuracies of these processes were carefully investigated, considering the accuracy required for diffraction-limited focusing. The wavefront produced by the corrected multilayer focusing mirrors was characterized again in the same manner, revealing that the root mean square of the wavefront aberration was improved from 2.7 (3.3) rad to 0.52 (0.82) rad in the vertical (horizontal) direction. A wave-optical simulator indicated that these wavefront-corrected multilayer focusing mirrors are capable of achieving sub-10-nm X-ray focusing.