Links

Tools

Export citation

Search in Google Scholar

The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Adenovirus type 37 (Ad37) is a leading cause of epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular disease. Whereas most other adenoviruses infect cells by engaging CD46 or the coxsackie and adenovirus receptor (CAR), Ad37 binds previously unknown sialic acid-containing cell surface molecules. By glycan array screening, we show here that the receptor-recognizing knob domain of the Ad37 fiber protein specifically binds a branched hexasaccharide that is present in the GD1a ganglioside and that features two terminal sialic acids. Soluble GD1a glycan and GD1a-binding antibodies efficiently prevented Ad37 virions from binding and infecting corneal cells. Unexpectedly, the receptor is constituted by one or more glycoproteins containing the GD1a glycan motif rather than the ganglioside itself, as shown by binding, infection and flow cytometry experiments. Molecular modeling, nuclear magnetic resonance and X-ray crystallography reveal that the two terminal sialic acids dock into two of three previously established sialic acid-binding sites in the trimeric Ad37 knob. Surface plasmon resonance analysis shows that the knob-GD1a glycan interaction has high affinity. Our findings therefore form a basis for the design and development of sialic acid-containing antiviral drugs for topical treatment of EKC.