Published in

American Society for Cell Biology, Molecular Biology of the Cell, 25(30), p. 3024-3036, 2019

DOI: 10.1091/mbc.e19-05-0304

Links

Tools

Export citation

Search in Google Scholar

HAX1 impact on collective cell migration, cell adhesion, and cell shape is linked to the regulation of actomyosin contractility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

HAX1 protein is involved in the regulation of apoptosis, cell motility and calcium homeostasis. Its overexpression was reported in several tumors, including breast cancer. This study demonstrates that HAX1 has an impact on collective, but not single-cell migration, thus indicating the importance of cell–cell contacts for the HAX1-mediated effect. Accordingly, it was shown that HAX1 knockdown affects cell–cell junctions, substrate adhesion, and epithelial cell layer integrity. As demonstrated here, these effects can be attributed to the modulation of actomyosin contractility through changes in RhoA and septin signaling. Additionally, it was shown that HAX1 does not influence invasive potential in the breast cancer cell line, suggesting that its role in breast cancer progression may be linked instead to collective invasion of the epithelial cells but not single-cell dissemination.