Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Applied Physiology, 6(127), p. 1511-1518, 2019

DOI: 10.1152/japplphysiol.00290.2019

Links

Tools

Export citation

Search in Google Scholar

Safety, hemodynamic effects, and detection of acute xenon inhalation: rationale for banning xenon from sport

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed to quantify the sedative effects, detection rates, and cardiovascular responses to xenon. On 3 occasions, participants breathed xenon (FiXe 30% for 20 min; FiXe 50% for 5 min; FiXe 70% for 2 min) in a nonblinded design. Sedation was monitored by a board-certified anesthesiologist. During 70% xenon, participants were also verbally instructed to operate a manual value with time-to-task failure being recorded. Beat-by-beat hemodynamics were measured continuously by ECG, photoplethysmography, and transcranial Doppler. Over 48 h postadministration, xenon was measured in blood and urine by gas chromatography-mass spectrometry. Xenon caused variable levels of sedation and restlessness. Task failure of the self-operating value occurred at 60–90 s in most individuals. Over the first minute, 50% and 70% xenon caused a substantial reduction in total peripheral resistance ( P < 0.05). All dosages caused an increase in cardiac output ( P < 0.05). By the end of xenon inhalation, slight hypertension was observed after all three doses ( P < 0.05), with an increase in middle cerebral artery velocity ( P < 0.05). Xenon was consistently detected, albeit in trace amounts, up to 3 h after all three doses of xenon inhalation in blood and urine with variable results thereafter. Xenon inhalation caused sedation incompatible with self-operation of a breathing apparatus, thus causing a potential life-threatening condition in the absence of an anesthesiologist. Yet, xenon can only be reliably detected in blood and urine up to 3 h postacute dosing. NEW & NOTEWORTHY Breathing xenon in dosages conceivable for doping purposes (FiXe 30% for 20 min; FiXe 50% for 5 min; FiXe 70% for 2 min) causes an initial rapid fall in total peripheral resistance with tachycardia and thereafter a mild hypertension with elevated middle cerebral artery velocity. These dose duration intervals cause sedation that is incompatible with operating a breathing apparatus and can only be detected in blood and urine samples with a high probability for up to ~3 h.