Published in

Lippincott, Williams & Wilkins, Anesthesiology, 5(130), p. 778-790, 2019

DOI: 10.1097/aln.0000000000002655

Links

Tools

Export citation

Search in Google Scholar

Extracellular Vesicles from Interferon-γ–primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli–induced Acute Lung Injury in Rats

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ–primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell–derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. Methods In a university laboratory, anesthetized adult male Sprague–Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 109 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell–derived extracellular vesicles, (b) naïve mesenchymal stromal cell–derived extracellular vesicles (both 100 million mesenchymal stromal cell–derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell–derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. Results Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell–derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed—but not naïve—mesenchymal stromal cell–derived extracellular vesicles reduced alveolar–arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed—but not naïve—mesenchymal stromal cell–derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/β-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell–derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. Conclusions Extracellular vesicles from interferon-γ–primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli–induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.