Published in

Elsevier, Bioresource Technology, (153), p. 307-314, 2014

DOI: 10.1016/j.biortech.2013.11.087

Links

Tools

Export citation

Search in Google Scholar

Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mass transfer of CO2 from flue gas was quantified in a 100 m2 raceway. The carbonation sump was operated with and without a baffle at different liquid/gas ratios, with the latter having the greatest influence on CO2 recovery from the flue gas. A rate of mass transfer sufficient to meet the demands of an actively growing algal culture was best achieved by maintaining pH at ∼8. Full optimisation of the process required both pH control and selection of the best liquid/gas flow ratio. A carbon transfer rate of 10 gC·min-1 supporting an algal productivity of 17 g·m-2·day-1 was achieved with only 4% direct loss of CO2 in the sump. 66% of the carbon was incorporated into biomass, while 6% was lost by outgassing and the remainder as dissolved carbon in the liquid phase. Use of a sump baffle required additional power without significantly improving carbon mass transfer.