Dissemin is shutting down on January 1st, 2025

Published in

Georg Thieme Verlag, Planta Medica: Journal of Medicinal Plant and Natural Product Research, 17(85), p. 1363-1373, 2019

DOI: 10.1055/a-1018-5402

Links

Tools

Export citation

Search in Google Scholar

Lespedeza bicolor Extract Improves Amyloid Beta25 – 35-Induced Memory Impairments by Upregulating BDNF and Activating Akt, ERK, and CREB Signaling in Mice

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Lespedeza bicolor, a traditional herbal medicine widely used in Australia, North America, and Eastern Asia, has various therapeutic effects on inflammation, nephritis, hyperpigmentation, and diuresis. In this study, to evaluate the effects of L. bicolor on cognitive function, we examined whether L. bicolor improved amyloid beta-induced memory impairment and assessed the possible mechanisms in mice. Catechin, rutin, daidzein, luteolin, naringenin, and genistein were identified in the powdered extract of L. bicolor by HPCL-DAD analyses. In behavioral experiments, L. bicolor (25 and 50 mg/kg, p. o.) significantly improved amyloid beta25 – 35 (6 nmol, intracerebroventricular)-induced cognitive dysfunction in the Y-maze, novel recognition, and passive avoidance tests. Our molecular studies showed L. bicolor (25 and 50 mg/kg, p. o.) significantly recovered the reduced glutathione content as well as increased thiobarbituric acid reactive substance and acetylcholinesterase activities in the hippocampus. Furthermore, we found that L. bicolor significantly increased the expression of brain-derived neurotrophic factor, and phospho-Akt, extracellular signal-regulated kinase, and cAMP response element binding caused by amyloid beta25 – 35 in the hippocampus. In conclusion, L. bicolor exerts a potent memory-enhancing effect on cognitive dysfunction induced by amyloid beta25 – 35 in mice.