Published in

Future Medicine, Nanomedicine, 9(14), p. 1135-1152, 2019

DOI: 10.2217/nnm-2018-0370

Links

Tools

Export citation

Search in Google Scholar

Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as magnetic resonance imaging (MRI) contrast agents; however, a number of T2-weighted imaging SPIONs have been withdrawn due to their poor clinical contrast performance. Our aim was to significantly improve SPION T2-weighted MRI contrast by clustering SPIONs within novel chitosan amphiphiles. Methods: Clustering SPIONs was achieved by encapsulation of hydrophobic-coated SPIONs with an amphiphilic chitosan polymer (GCPQ). Results: Clustering increases the spin-spin ( r2) to spin-lattice ( r1) relaxation ratio ( r2/r1) from 3.0 to 79.1, resulting in superior contrast. Intravenously administered clustered SPIONs accumulated only in the liver and spleen; with the reduction in T2 relaxation confined, in the liver, to the extravascular space, giving clear MRI images of the liver vasculature.