Published in

MDPI, Nutrients, 11(11), p. 2821, 2019

DOI: 10.3390/nu11112821

Links

Tools

Export citation

Search in Google Scholar

Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Redox imbalance is an adverse on-going phenomenon in renal transplant recipients (RTR). Vitamin E has important antioxidant properties that counterbalance its deleterious effects. However, plasma vitamin E affinity with lipids challenges interpretation of its levels. To test the hypothesis that erythrocyte membranes represent a lipids-independent specimen to estimate vitamin E status, we performed a cross-sectional study in a cohort of adult RTR (n = 113) recruited in a university setting (2015–2018). We compared crude and total lipids-standardized linear regression-derived coefficients of plasma and erythrocyte tocopherol species in relation to clinical and laboratory parameters. Strongly positive associations of fasting lipids with plasma tocopherol became inverse, rather than absent, in total lipids-standardized analyses, indicating potential overadjustment. Whilst, no variables from the lipids domain were associated with the tocopherol species measured from erythrocyte specimens. In relation to inflammatory status and clinical parameters with antioxidant activity, we found associations in directions that are consistent with either beneficial or adverse effects concerning α- or γ-tocopherol, respectively. In conclusion, erythrocytes offer a lipids-independent alternative to estimate vitamin E status and investigate its relationship with parameters over other biological domains. In RTR, α- and γ-tocopherol may serve as biomarkers of relatively lower or higher vulnerability to oxidative stress and inflammation, noticeably in opposite directions.