Published in

Elsevier, Acta Biomaterialia, 4(7), p. 1542-1549

DOI: 10.1016/j.actbio.2010.12.022

Links

Tools

Export citation

Search in Google Scholar

Enhanced attachment, growth and migration of smooth muscle cells on microcarriers produced using thermally induced phase separation

Journal article published in 2011 by R. Ahmadi, N. Mordan, A. Forbes ORCID, Rm M. Day
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microcarriers are widely used for the expansion of cells in vitro, but also offer an approach for combining cell transplantation and tissue bulking for regenerative medicine in a minimally invasive manner. This could be beneficial in conditions associated with muscle damage or atrophy, such as faecal incontinence, where the use of bulking materials or cell transplantation alone has proven to be ineffective. Microcarriers currently available have not been designed for this purpose and are likely to be suboptimal clue to their physical and biochemical properties. The aim of this study was to investigate macroporous microspheres of polylactide-co-glycolide (PLGA), prepared using a thermally induced phase separation technique, for their suitability as cell microcarriers for the transplantation of smooth muscle cells. Cell attachment, growth and migration were studied and compared with commercially available porcine gelatin microcarriers (Cultispher-S) in suspension culture. Smooth muscle cells attached more rapidly to the PLGA microcarriers, which also significantly enhanced the rate of cell growth compared with Cultispher-S microcarriers. The majority of smooth muscle cells attached to the PLGA microcarriers in suspension culture were able to migrate away over a 15 day period of static culture, unlike Cultispher-S microcarriers which retained the majority of cells. The ability of PLGA microcarriers to enhance cell growth combined with their capacity to release cells at the sites of delivery are features that make them ideally suited for use as a cell transplantation delivery device in tissue engineering and regenerative medicine. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.