Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 41(17), p. 11613-11621, 2011

DOI: 10.1002/chem.201100399

Links

Tools

Export citation

Search in Google Scholar

Textured Fluorine-Doped Tin Dioxide Films formed by Chemical Vapour Deposition

Journal article published in 2011 by Ds Bhachu, Mr Waugh, Katharina Zeissler ORCID, Wr Branford, Ip Parkin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of an aerosol delivery system enabled fluorine-doped tin dioxide films to be formed from monobutyltin trichloride methanolic solutions at 350-550 °C with enhanced functional properties compared with commercial standards. It was noted that small aerosol droplets (0.3 μm) gave films with better figures of merit than larger aerosol droplets (45 μm) or use of a similar precursor set using atmospheric pressure chemical vapour deposition (CVD) conditions. Control over the surface texturing and physical properties of the thin films were investigated by variation in the deposition temperature and dopant concentration. Optimum deposition conditions for low-emissivity coatings were found to be at a substrate temperature of about 450 °C with a dopant concentration of 1.6 atm% (30 mol% F:Sn in solution), which resulted in films with a low visible light haze value (1.74%), a high charge-carrier mobility (25 cm(2) V s(-1)) and a high charge-carrier density (5.7×10(20) cm(-3)) resulting in a high transmittance across the visible (≈80%), a high reflectance in the IR (80% at 2500 nm) and plasma-edge onset at 1400 nm. Optimum deposition conditions for coatings with applications as top electrodes in thin film photovoltaics were found to be a substrate temperature of about 500 °C with a dopant concentration of 2.2 atm% (30 mol% F:Sn in solution), which resulted in films with a low sheet resistance (3 Ω sq(-1)), high charge-carrier density (6.4×10(20) cm(-3)), a plasma edge onset of 1440 nm and the films also showed pyramidal surface texturing on the micrometer scale which corresponded to a high visible light haze value (8%) for light scattering and trapping within thin film photovoltaic devices.