Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, Journal of Medical Internet Research, 5(21), p. e10942, 2019

DOI: 10.2196/10942

Links

Tools

Export citation

Search in Google Scholar

Estimating Determinants of Attrition in Eating Disorder Communities on Twitter: An Instrumental Variables Approach

Journal article published in 2019 by Tao Wang ORCID, Emmanouil Mentzakis ORCID, Markus Brede ORCID, Antonella Ianni ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BackgroundThe use of social media as a key health information source has increased steadily among people affected by eating disorders (EDs). Research has examined characteristics of individuals engaging in online communities, whereas little is known about discontinuation of engagement and the phenomenon of participants dropping out of these communities.ObjectiveThis study aimed to investigate the characteristics of dropout behaviors among eating disordered individuals on Twitter and to estimate the causal effects of personal emotions and social networks on dropout behaviors.MethodsUsing a snowball sampling method, we collected a set of individuals who self-identified with EDs in their Twitter profile descriptions, as well as their tweets and social networks, leading to 241,243,043 tweets from 208,063 users. Individuals’ emotions are measured from their language use in tweets using an automatic sentiment analysis tool, and network centralities are measured from users’ following networks. Dropout statuses of users are observed in a follow-up period 1.5 years later (from February 11, 2016 to August 17, 2017). Linear and survival regression instrumental variables models are used to estimate the effects of emotions and network centrality on dropout behaviors. The average levels of attributes among an individual’s followees (ie, people who are followed by the individual) are used as instruments for the individual’s attributes.ResultsEating disordered users have relatively short periods of activity on Twitter with one half of our sample dropping out at 6 months after account creation. Active users show more negative emotions and higher network centralities than dropped-out users. Active users tend to connect to other active users, whereas dropped-out users tend to cluster together. Estimation results suggest that users’ emotions and network centralities have causal effects on their dropout behaviors on Twitter. More specifically, users with positive emotions are more likely to drop out and have shorter lasting periods of activity online than users with negative emotions, whereas central users in a social network have longer lasting participation than peripheral users. Findings on users’ tweeting interests further show that users who attempt to recover from EDs are more likely to drop out than those who promote EDs as a lifestyle choice.ConclusionsPresence in online communities is strongly determined by the individual’s emotions and social networks, suggesting that studies analyzing and trying to draw condition and population characteristics through online health communities are likely to be biased. Future research needs to examine in more detail the links between individual characteristics and participation patterns if better understanding of the entire population is to be achieved. At the same time, such attrition dynamics need to be acknowledged and controlled when designing online interventions so as to accurately capture their intended populations.