Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter Open, Journal of Hydrology and Hydromechanics, 4(67), p. 297-304, 2019

DOI: 10.2478/johh-2019-0018

Links

Tools

Export citation

Search in Google Scholar

The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment - An experimental study

Journal article published in 2019 by Gabriel Minea ORCID, Gabriela Ioana-Toroimac, Gabriela Moroşanu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract This paper aimed to investigate the dominant runoff processes (DRP’s) at plot-scale in the Curvature Subcarpathians under natural rainfall conditions characteristic for Romania’s temperate environment. The study was based on 32 selected rainfall-runoff events produced during the interval April–September (2014–2017). By comparing water balance on the analyzed Luvisol plots for two types of land use (grassland vs. bare soil), we showed that DRP’s are mostly formed by Hortonian Overland Flow (HOF), 47% vs. 59% respectively. On grassland, HOF is followed by Deep Percolation (DP, 31%) and Fast Subsurface Flow (SSF, 22%), whereas, on bare soil, DP shows a higher percentage (38%) and SSF a lower one (3%), which suggests that the soil-root interface controls the runoff generation. Concerning the relationship between antecedent precipitation and runoff, the study indicated the nonlinearity of the two processes, more obvious on grassland and in drought conditions than on bare soil and in wet conditions (as demonstrated by the higher runoff coefficients). Moreover, the HOF appeared to respond differently to rainfall events on the two plots - slightly longer lag-time, lower discharge and lower volume on grassland - which suggests the hydrologic key role of vegetation in runoff generation processes.