Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms5765

Links

Tools

Export citation

Search in Google Scholar

Energy landscape and dynamics of brain activity during human bistable perception

Journal article published in 2014 by Takamitsu Watanabe ORCID, Naoki Masuda, Fukuda Megumi ORCID, Ryota Kanai, Geraint Rees
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIndividual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.