Published in

MDPI, Chemosensors, 4(7), p. 56, 2019

DOI: 10.3390/chemosensors7040056

Links

Tools

Export citation

Search in Google Scholar

Nanostructured Semiconducting Metal Oxide Gas Sensors for Acetaldehyde Detection

Journal article published in 2019 by Ali Mirzaei ORCID, Hyoun Woo Kim, Sang Sub Kim ORCID, Giovanni Neri ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Volatile organic compounds (VOCs) are among the most abundant air pollutants. Their high concentrations can adversely affect the human body, and therefore, early detection of VOCs is of outmost importance. Among the different VOCs, in this review paper we have focused our attention to the monitoring of acetaldehyde by chemiresistive gas sensors fabricated from nanostructured semiconducting metal oxides. These sensors can not only provide a high sensing signal for detection of acetaldehyde but also high thermal and mechanical stability along with a low price. This review paper is divided into three major sections. First, we will introduce acetaldehyde as an important VOC and the importance of its detection. Then, the fundamentals of chemiresistive gas sensors will be briefly presented, and in the last section, a survey of the literature on acetaldehyde gas sensors will be presented. The working mechanism of acetaldehyde sensors, their structures, and configurations are reviewed. Finally, the future development outlook and potential applications are discussed, giving a complete panoramic view for researchers working and interested in acetaldehyde detection for different purposes in many fundamental and applicative fields.