Published in

American Association for Cancer Research, Clinical Cancer Research, 22(25), p. 6709-6720, 2019

DOI: 10.1158/1078-0432.ccr-19-0526

Links

Tools

Export citation

Search in Google Scholar

An Integrative Approach to Inform Optimal Administration of OX40 Agonist Antibodies in Patients with Advanced Solid Tumors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: The success of checkpoint blockade has led to a significant increase in the development of a broad range of immunomodulatory molecules for the treatment of cancer, including agonists against T-cell costimulatory receptors, such as OX40. Unlike checkpoint blockade, where complete and sustained receptor saturation may be required for maximal activity, the optimal dosing regimen and receptor occupancy for agonist agents is less well understood and requires further study. Experimental Design: We integrated both preclinical and clinical biomarker data sets centered on dose, exposure, receptor occupancy, receptor engagement, and downstream pharmacodynamic changes to model the optimal dose and schedule for the OX40 agonist antibody BMS-986178 alone and in combination with checkpoint blockade. Results: Administration of the ligand-blocking anti-mouse surrogate antibody OX40.23 or BMS-986178 as monotherapy or in combination with checkpoint blockade led to increased peripheral CD4+ and CD8+ T-cell activation in tumor-bearing mice and patients with solid tumors, respectively. OX40 receptor occupancy between 20% and 50% both in vitro and in vivo was associated with maximal enhancement of T-cell effector function by anti-OX40 treatment, whereas a receptor occupancy > 40% led to a profound loss in OX40 receptor expression, with clear implications for availability for repeat dosing. Conclusions: Our results highlight the value of an integrated translational approach applied during early clinical development to aggregate preclinical and clinical data in an effort to define the optimal dose and schedule for T-cell agonists in the clinic.