Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Cell Science, 2019

DOI: 10.1242/jcs.217455

Links

Tools

Export citation

Search in Google Scholar

Repetitive switching between DNA-binding modes enables target finding by the glucocorticoid receptor

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) using fluorescence recovery after photobleaching and single-molecule microscopy. First we have described the dynamic states in which the GR occurs. Subsequently we have analyzed the transitions between these states using a continuous time Markov chain model, and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus, and once it leaves this free diffusion state it most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact searching strategy which facilitates finding DNA target sites by the GR.