Published in

MDPI, Sensors, 3(19), p. 449, 2019

DOI: 10.3390/s19030449



Export citation

Search in Google Scholar

Comparison of Standard Clinical and Instrumented Physical Performance Tests in Discriminating Functional Status of High-Functioning People Aged 61–70 Years Old

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


Assessment of physical performance by standard clinical tests such as the 30-sec Chair Stand (30CST) and the Timed Up and Go (TUG) may allow early detection of functional decline, even in high-functioning populations, and facilitate preventive interventions. Inertial sensors are emerging to obtain instrumented measures that can provide subtle details regarding the quality of the movement while performing such tests. We compared standard clinical with instrumented measures of physical performance in their ability to distinguish between high and very high functional status, stratified by the Late-Life Function and Disability Instrument (LLFDI). We assessed 160 participants from the PreventIT study (66.3 ± 2.4 years, 87 females, median LLFDI 72.31, range: 44.33–100) performing the 30CST and TUG while a smartphone was attached to their lower back. The number of 30CST repetitions and the stopwatch-based TUG duration were recorded. Instrumented features were computed from the smartphone embedded inertial sensors. Four logistic regression models were fitted and the Areas Under the Receiver Operating Curve (AUC) were calculated and compared using the DeLong test. Standard clinical and instrumented measures of 30CST both showed equal moderate discriminative ability of 0.68 (95%CI 0.60–0.76), p = 0.97. Similarly, for TUG: AUC was 0.68 (95%CI 0.60–0.77) and 0.65 (95%CI 0.56–0.73), respectively, p = 0.26. In conclusion, both clinical and instrumented measures, recorded through a smartphone, can discriminate early functional decline in healthy adults aged 61–70 years.