Published in

Institute of Electrical and Electronics Engineers, IEEE Journal of Selected Topics in Signal Processing, 6(4), p. 1084-1093, 2010

DOI: 10.1109/jstsp.2010.2076071

Links

Tools

Export citation

Search in Google Scholar

Multilevel and session variability compensated language recognition: ATVS-UAM systems at NIST LRE 2009

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Gonzalez-Dominguez, I. Lopez-Moreno, J. Franco-Pedroso, D. Ramos, D. T. Toledano, and J. Gonzalez-Rodriguez, "Multilevel and Session Variability Compensated Language Recognition: ATVS-UAM Systems at NIST LRE 2009" IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp. 1084 – 1093, December 2010 ; This work presents the systems submitted by the ATVS Biometric Recognition Group to the 2009 Language Recognition Evaluation (LRE’09), organized by NIST. New challenges included in this LRE edition can be summarized by three main differences with respect to past evaluations. Firstly, the number of languages to be recognized expanded to 23 languages from 14 in 2007, and 7 in 2005. Secondly, the data variability has been increased by including telephone speech excerpts extracted from Voice of America (VOA) radio broadcasts through Internet in addition to Conversational Telephone Speech (CTS). The third difference was the volume of data, involving in this evaluation up to 2 terabytes of speech data for development, which is an order of magnitude greater than past evaluations. LRE’09 thus required participants to develop robust systems able not only to successfully face the session variability problem but also to do it with reasonable computational resources. ATVS participation consisted of state-of-the-art acoustic and high-level systems focussing on these issues. Furthermore, the problem of finding a proper combination and calibration of the information obtained at different levels of the speech signal was widely explored in this submission. In this work, two original contributions were developed. The first contribution was applying a session variability compensation scheme based on Factor Analysis (FA) within the statistics domain into a SVM-supervector (SVM-SV) approach. The second contribution was the employment of a novel backend based on anchor models in order to fuse individual systems prior to one-vs-all calibration via logistic regression. Results both in development and evaluation corpora show the robustness and excellent performance of the submitted systems, exemplified by our system ranked 2nd in the 30 second open-set condition, with remarkably scarce computational resources.