Dissemin is shutting down on January 1st, 2025

Published in

Universidad Nacional de Colombia, Acta Biológica Colombiana, 1(24), p. 150-162, 2019

DOI: 10.15446/abc.v24n1.73642

Links

Tools

Export citation

Search in Google Scholar

Biofilms and Extracts from Bacteria Producing "<i>Quorum Sensing</i>" Signaling Molecules Promote Chemotaxis and Settlement Behaviors in <i>Hydractinia symbiolongicarpus</i> (Cnidaria: Hydrozoa) Larvae

Journal article published in 2019 by Angel G. Franco, Luis F. Cadavid ORCID, Catalina Arévalo-Ferro
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many sessile marine invertebrates have life cycles involving the development of larvae that settle on specific substrates to initiate metamorphosis to juvenile forms. Although is recognized that bacterial biofilms play a role in this process, the responsible chemical cues are beginning to be investigated. Here, we tested the role of substrate-specific bacteria biofilms and their Quorum Sensing Signaling Molecule (QSSM) extracts on chemotaxis and settlement of larvae from Hydractinia symbiolongicarpus, a hydroid that grows on gastropod shells occupied by hermit crabs. We isolated and taxonomically identified by 16S rDNA sequencing, 14 bacterial strains from shells having H. symbiolongicarpus. Three isolates, Shigella flexneri, Microbacterium liquefaciens, and Kocuria erythromyxa, were identified to produce QSSMs using biosensors detecting N-acyl-L-homoserine lactones. Multispecies biofilms and QSSM extracts from these bacteria showed a positive chemotactic effect on H. symbiolongicarpus larvae, a phenomenon not observed with mutant strains of E. coli and Chromobacterium violaceum that are unable to produce QSSMs. These biofilms and QSSMs extracts induced high rates of larval attachment, although only 1 % of the attached larvae metamorphosed to primary polyps, in contrast to 99 % of larvae incubated with CsCl, an artificial inductor of attachment and metamorphosis. These observations suggest that bacterial QSSMs participate in H. symbiolongicarpus substrate selection by inducing larval chemotaxis and attachment. Furthermore, they support the notion that settlement in cnidarians is decoupled into two processes, attachment to the substrate and metamorphosis to a primary polyp, where QSSMs likely participate in the former but not in the latter.