Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Communications Chemistry, 1(2), 2019

DOI: 10.1038/s42004-019-0231-3

Links

Tools

Export citation

Search in Google Scholar

Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNiobium pentoxides are promising acid catalysts for the conversion of biomass into fuels and chemicals. Developing new synthesis routes is essential for designing niobium pentoxide catalysts with improved activity for specific practical processes. Here we show a synthesis approach in acetophenone, which produces nanostructured niobium pentoxides with varying structure and acidity that act as efficient acid catalysts. The oxides have orthorhombic structures with different extents of distortions and coordinatively unsaturated metal atoms. A strong dependence is observed between the type and strength of the acid sites and specific structural motifs. Ultrasmall niobium pentoxide nanoparticles, which have strong Brønsted acidity, as well as Lewis acidity, give product yields of 96% (3 h, 140 °C, 100% conversion), 85% (3 h, 140 °C, 86% conversion), and 100% (3 h, 110 °C, 100% conversion) in the reactions of furfuryl alcohol, 5-(hydroxymethyl)furfural, and α-angelica lactone with ethanol, respectively.