Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Natural Products Journal, 1(11), 2021

DOI: 10.2174/22103155mtaydmjabx

Bentham Science Publishers, The Natural Products Journal, 1(11), p. 63-73, 2021

DOI: 10.2174/2210315509666191111102557

Links

Tools

Export citation

Search in Google Scholar

LC-MS/MS Profiling of 37 Fingerprint Phytochemicals in Oenanthe fistulosa L. and its Biological Activities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Oenanthe fistulosa L. (Apiaceae) is often associated with damp soils. Its underground parts and the young leaves are mainly cooked with other vegetables. Objective: The aim of the current work was to investigate the chemical profile of dichloromethane (DCM), Ethyl Acetate (EA) and n-butanol (BuOH) fractions of O. fistulosa through analysis of 37 phytochemicals by LC-MS/MS and to evaluate their biological activities such as antioxidant, anticholinesterase and antityrosinase for the first time. Methods: Analysis of 37 phytochemicals was performed by Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Antioxidant activity was evaluated using five in vitro assays, while anticholinesterase and anti-tyrosinase activities were performed using Ellman and Dopachrome methods, respectively. Results: The number of phenolic compounds detected in DCM, EA and BuOH fractions was found to be 9, 15, and 12; respectively. More specifically, 9 phenolic acids were detected and among them, chlorogenic, tr-ferulic and p-coumaric acids were the most abundant. While 8 flavonoids were detected and apigetrin, rutin, and quercitrin were the most abundant. In addition, 3 non-phenolic organic acids (quinic, malic and fumaric acids) were detected in large quantities. Furthermore, the tested plant fractions demonstrated a noteworthy and strong antioxidant action. The plant displayed very strong action against Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes; and BuOH fraction was the most potent one. Finally, BuOH and DCM fractions showed good tyrosinase inhibitory activity. Conclusion: According to the obtained results, O. fistulosa might be a promising candidate for the alleviation of oxidative stress, neurodegenerative (such as Alzheimer’s disease) and hyperpigmentation disorders.