SAGE Publications, Journal of Psychopharmacology, 12(33), p. 1491-1500, 2019
Full text: Unavailable
Purpose: The transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that mediates synaptic modification in the nucleus accumbens (NAc). However, no study has yet examined the mechanism of TRPV1 in the NAc on cocaine reinstatement. We investigated the mechanism of TRPV1 in NAc on cocaine reinstatement using the conditioned place preference (CPP) test in mice. Methods: We examined the effect of capsazepine (5 mg/kg, a TRPV1 antagonist, administered intraperitoneally (i.p.)), capsaicin (0.3 mg/kg, a TRPV1 agonist, administered i.p.), and genetic deletion of TRPV1 on the reinstatement of cocaine-induced CPP (15 mg/kg, administered i.p.). The expression of TRPV1 and Ca2+/calmodulin-mediated kinase II (CaMKII) in the NAc were determined after cocaine reinstatement. Microinjection of SB366791 (0.2 ng, a selective TRPV1 antagonist) in the NAc was assessed on SKF-81297 (1 µg, D1-like dopamine (DA) receptor agonist) primed cocaine reinstatement. Results: Capsazepine suppressed and capsaicin potentiated cocaine CPP in the reinstatement phase. In addition, genetic deletion of TRPV1 inhibited cocaine-priming reinstatement. Cocaine reinstatement was mediated by increased TRPV1 expression in the NAc, which involves CaMKII. Microinjection of SB366791 in the NAc prevented the cocaine reinstatement evoked by microinjection of SKF-81297 in the NAc. Conclusions: These findings suggest that activation of TRPV1 mediates the stimulation of D1-like DA receptors and CaMKII in the NAc, resulting in the facilitation of cocaine reinstatement behaviors. Thus, our findings reveal a previously unknown TRPV1 mechanism in the reinstatement to drugs of abuse.