Published in

Oxford University Press (OUP), Neuro-Oncology, Supplement_6(21), p. vi121-vi121, 2019

DOI: 10.1093/neuonc/noz175.504

Links

Tools

Export citation

Search in Google Scholar

Immu-10. Establishing Effective Models for Immunotherapy in Gbm

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The introduction of immunotherapies has been paradigm shifting for cancers that were previously a death sentence. However, preclinical/clinical studies on glioblastoma (GBM) have generated mixed outcomes in patients, likely due to its great heterogeneity of immune microenvironment, particularly the myeloid cell populations. Primary patient studies have been limited by a difficulty in performing longitudinal studies, uncontrolled environmental conditions, and genetic variability. There is also, unfortunately, a paucity of mouse models that effectively re-capitulate the immune microenvironment of the human disease. To address these difficulties, we have established the Qk/p53/Pten (QPP) triple knockout mouse model established in our lab. The QPP model uses a cre-lox system to induce Qk deletion on a Pten−/−; p53−/− background which helps NSCs maintain their stemness outside the SVZ in Nes-CreERT2;QkiL/L PtenL/L p53L/L mice, which develops glioblastoma with survival of ~105 days. We have preliminarily assessed the QPP tumors as a faithful model to study the immune response to GBM and found them to recapitulate human GBM with respect to differential response to checkpoint blockade therapy and myeloid and T-cells histopathologically, particularly regarding upregulation of Arginase-1 (Arg1). Arg1 is the canonical marker for tumor-associated macrophages (TAMs), which is a major population of myeloid cells that greatly infiltrate in human GBM, sometimes making up more than ~30% of all GBM cells. Given TAMs’ prevalence in the tumor microenvironment and their upregulation of Arg1 in both human GBM and our QPP model, we are testing whether manipulation of Arg1 will impact TAM function and influence GBM growth. We are also evaluating arginine metabolism in TAMs effect on T cell function in GBM. Lastly, we have developed a genetically engineered mouse model to study the role of Arg1 knockout in a GBM context in-vivo. Our studies suggest that Arg1 plays an important role in GBM immune interaction.