Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Neuro-Oncology, Supplement_6(21), p. vi248-vi248, 2019

DOI: 10.1093/neuonc/noz175.1040

Links

Tools

Export citation

Search in Google Scholar

Tmic-06. Myeloid Populations and the Effect of Neoadjuvant Pd-1 Inhibition in the Glioblastoma Microenvironment: A Surfaceomic and Transcriptomic Dissection at the Single-Cell Level

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract INTRODUCTION Glioblastoma (GBM) is the most common malignant brain tumor in adults and is associated with a dismal prognosis. Neoadjuvant anti-PD-1 blockade has demonstrated efficacy in melanoma, non-small cell lung cancer and recurrent GBM; however, responses vary. While T cells have garnered considerable attention in the context of immunotherapy, the role of myeloid cells in the GBM microenvironment remains controversial. METHODS We isolated CD45+ immune populations from patients who underwent brain tumor resection at UCLA. We hypothesized that myeloid cells in glioblastoma contribute to T cell dysfunction; however, this immune suppression can be mitigated by neoadjuvant PD-1 inhibition. To test this, we utilized mass cytometry and single-cell RNA sequencing to characterize these immune populations. RESULTS Mass cytometry profiling of tumor infiltrating lymphocytes from patients with GBM demonstrated a preponderance of CD11b+ myeloid populations (75% versus 25% CD3+). At the transcriptomic level, myeloid cells in newly diagnosed GBMs exhibited decreased expression of CCL4 (loge fold change -1.18, Bonferroni-adjusted P = 1.62x10-254) and its ligands compared to anaplastic astrocytoma. In ranked gene set enrichment analysis, patients who received neoadjuvant pembrolizumab demonstrated enrichment in TNFα-, NFκB- and lipid metabolism-related gene sets by bootstrapped Kolmogorov-Smirnov test (Benjamini-Hochberg adjusted P = 4.74x10-3, 1.45x10-2 and 2.48x10-3, respectively) in tumor-associated myeloid populations. Additionally, single-cell trajectory analysis demonstrated increased CCL4 and decreased ISG15 with neoadjuvant checkpoint inhibition. CONCLUSIONS Here, we utilize mass cytometry and single-cell RNA sequencing to demonstrate the predominance and transcriptomic features of myeloid populations in GBM. Myeloid cells in patients who receive neoadjuvant PD-1 blockade re-express increased levels NFκB, TNFα and CCL4, a cytokine crucial for the recruitment of dendritic cells to the tumor for antigen-specific T cell activation. By delving into the GBM microenvironment at the single-cell level, we hope to better delineate the role of myeloid populations in this uniformly fatal tumor.