Published in

Oxford University Press (OUP), Endocrinology, 12(160), p. 2825-2836, 2019

DOI: 10.1210/en.2018-00936

Links

Tools

Export citation

Search in Google Scholar

The Loss of ARNT/HIF1β in Male Pancreatic β-Cells Is Protective Against High-Fat Diet–Induced Diabetes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1β (ARNT/HIF1β) plays a key role in maintaining β-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1β in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1β in the development of diabetes, we placed control (+/+/Cre) and β-cell–specific ARNT/HIF1β knockout (fl/fl/Cre) mice on a high-fat diet (HFD). Unlike the control (+/+/Cre) mice, HFD-fed fl/fl/Cre mice had no impairment in in vivo glucose tolerance. The lack of impairment in HFD-fed fl/fl/Cre mice was partly due to an improved islet glucose-stimulated NADPH/NADP+ ratio and glucose-stimulated insulin secretion. The effects of the HFD-rescued insulin secretion in fl/fl/Cre islets could be reproduced by treating low-fat diet (LFD)–fed fl/fl/Cre islets with the lipid signaling molecule 1-monoacylglcyerol. This suggests that the defects seen in LFD-fed fl/fl/Cre islet insulin secretion involve lipid signaling molecules. Overall, mice lacking ARNT/HIF1β in β-cells have altered lipid signaling in vivo and are resistant to an HFD’s ability to induce diabetes.