Published in

MDPI, Cancers, 11(11), p. 1756, 2019

DOI: 10.3390/cancers11111756

Links

Tools

Export citation

Search in Google Scholar

Targeting Negative and Positive Immune Checkpoints with Monoclonal Antibodies in Therapy of Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The immune checkpoints are regulatory molecules that maintain immune homeostasis in physiological conditions. By sending T cells a series of co-stimulatory or co-inhibitory signals via receptors, immune checkpoints can both protect healthy tissues from adaptive immune response and activate lymphocytes to remove pathogens effectively. However, due to their mode of action, suppressive immune checkpoints may serve as unwanted protection for cancer cells. To restore the functioning of the immune system and make the patient’s immune cells able to recognize and destroy tumors, monoclonal antibodies are broadly used in cancer immunotherapy to block the suppressive or to stimulate the positive immune checkpoints. In this review, we aim to present the current state of application of monoclonal antibodies in clinics, used either as single agents or in a combined treatment. We discuss the limitations of these therapies and possible problem-solving with combined treatment approaches involving both non-biological and biological agents. We also highlight the most promising strategies based on the use of monoclonal or bispecific antibodies targeted on immune checkpoints other than currently implemented in clinics.