Published in

Vestnik RFFI, 2, p. 82-100, 2019

DOI: 10.22204/2410-4639-2019-102-02-82-100

Links

Tools

Export citation

Search in Google Scholar

Methods for Synthesis of Molecular Materials with Unique Physical Properties

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The authors discovered and investigated new types of stable heterometallic carboxylate complexes in which divalent transition metal atoms of the 4th period of the Periodic Table of Chemical Elements (V, Co, Ni, Cu, Zn) combine with atoms of lithium, magnesium, calcium or rare earth elements. These polynuclear heterometallic compounds retain their structure under conditions when the homometallic compounds of these transition metals decompose to mononuclear complexes. The different metals combination in one molecule allows us to use the obtained heterometallic compounds for producing disperse and film oxide materials, and bimetallic oxide catalysts. The stability of the complexes allows to immobilize them in various matrices and to assemble 3D polymer structures on their base. Since the metal ions under consideration (V, Co, Ni, Cu, Zn) are capable to form isostructural heterometallic compounds, it becomes possible to obtain compounds within a single structural type with a given combination of physical properties, determined by the nature of the metal ions.