Published in

Nature Research, Communications Physics, 1(2), 2019

DOI: 10.1038/s42005-019-0228-3

Links

Tools

Export citation

Search in Google Scholar

The effect of introducing antibiotics into organic light-emitting diodes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe quest to improve the performance of organic light-emitting diodes (OLEDs) has led to the exploration of new materials with properties like interfacial dipole, excitons generation, and bandgap alignment. Here, we exploit these strategies by investigating the interaction of the antibiotic ampicillin with a widely used optoelectronic material, to fabricate state-of-the-art OLEDs. The charge distribution on the ampicillin molecule facilitates the generation of an interfacial dipole with a large magnitude. The optimum fusion of the two materials provides an enhanced bandgap alignment, charge balance and J/H-aggregated excitons. Values of current efficiency (120 cdA−1), external quantum efficiency (~35%) and power efficiency (70 lmW−1) are demonstrated. The cross-evaluation of performance with penicillin devices indicates the significance of ampicillin’s specific molecular structure in improving performance. The detailed investigations demonstrate that ampicillin has superior optoelectronic properties with high potential to contribute extensively in OLEDs and photovoltaics.