Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of the Marine Biological Association of the UK, 7(99), p. 1535-1546, 2019

DOI: 10.1017/s0025315419000547

Links

Tools

Export citation

Search in Google Scholar

Depth alone is an inappropriate proxy for physiological change in the mesophotic coralAgaricia lamarcki

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe physiology of mesophotic Scleractinia varies with depth in response to environmental change. Previous research has documented trends in heterotrophy and photosynthesis with depth, but has not addressed between-site variation for a single species. Environmental differences between sites at a local scale and heterogeneous microhabitats, because of irradiance and food availability, are likely important factors when explaining the occurrence and physiology of Scleractinia. Here, 108 colonies ofAgaricia lamarckiwere sampled from two locations off the coast of Utila, Honduras, distributed evenly down the observed 50 m depth range of the species. We found that depth alone was not sufficient to fully explain physiological variation. Pulse Amplitude-Modulation fluorometry and stable isotope analyses revealed that trends in photochemical and heterotrophic activity with depth varied markedly between sites. Our isotope analyses do not support an obligate link between photosynthetic activity and heterotrophic subsidy with increasing depth. We found thatA. lamarckicolonies at the bottom of the species depth range can be physiologically similar to those nearer the surface. As a potential explanation, we hypothesize sites with high topographical complexity, and therefore varied microhabitats, may provide more physiological niches distributed across a larger depth range. Varied microhabitats with depth may reduce the dominance of depth as a physiological determinant. Thus,A. lamarckimay ‘avoid’ changes in environment with depth, by instead existing in a subset of favourable niches. Our observations correlate with site-specific depth ranges, advocating for linking physiology and abiotic profiles when defining the distribution of mesophotic taxa.