Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 12(19), p. 3820, 2018

DOI: 10.3390/ijms19123820

Links

Tools

Export citation

Search in Google Scholar

Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression

Journal article published in 2018 by Matteo Spinelli ORCID, Salvatore Fusco ORCID, Claudio Grassi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Diet is the main environmental stimulus chronically impinging on the organism throughout the entire life. Nutrients impact cells via a plethora of mechanisms including the regulation of both protein post-translational modifications and gene expression. Palmitoylation is the most-studied protein lipidation, which consists of the attachment of a molecule of palmitic acid to residues of proteins. S-palmitoylation is a reversible cysteine modification finely regulated by palmitoyl-transferases and acyl-thioesterases that is involved in the regulation of protein trafficking and activity. Recently, several studies have demonstrated that diet-dependent molecules such as insulin and fatty acids may affect protein palmitoylation. Here, we examine the role of protein palmitoylation on the regulation of gene expression focusing on the impact of this modification on the activity of chromatin remodeler enzymes, transcription factors, and nuclear proteins. We also discuss how this physiological phenomenon may represent a pivotal mechanism underlying the impact of diet and nutrient-dependent signals on human diseases.