Published in

MDPI, Biosensors, 4(8), p. 117, 2018

DOI: 10.3390/bios8040117

Links

Tools

Export citation

Search in Google Scholar

A Liposomal Platform for Sensing of Extracellular Analytes Near Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cell-permeable fluorescent chemosensors (calcein, monochlorobimane, and a recently reported spiropyran-based sensor SP2) have been incorporated into yeast total lipid extract-based liposomes to suppress inherent cell permeability to allow the detection of extracellular Ca2+, GSH, and Zn2+, respectively. The repurposed sensors have enhanced aqueous solubility and the ability to quantitatively measure biologically relevant concentrations of Ca2+ (0.25 mM–1 mM), Zn2+ (6.25 µM–50 µM), and GSH (0.25 mM–1 mM) by fluorescence in aqueous media. In addition, the liposomal sensors are nontoxic to HEK293 cells and have the ability to detect exogenously added Zn2+ (1 mM), Ca2+ (1 mM), or GSH (1 mM) near cells without internalisation. This new sensing platform provides a means to repurpose a range of intracellular fluorescent sensors to specifically detect extracellular analytes, while also improving biocompatibility for overall enhanced use in a wide range of biomedical applications.