Published in

Elsevier, Respiratory Physiology & Neurobiology, 1-2(168), p. 125-132, 2009

DOI: 10.1016/j.resp.2009.03.005

Links

Tools

Export citation

Search in Google Scholar

PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phox2b is a master regulator of visceral reflex circuits. Its role in the control of respiration has been highlighted by the identification of heterozygous PHOX2B mutations as the cause of Central Congenital Hypoventilation Syndrome (CCHS), a rare disease defined by the lack of CO(2) responsiveness and of breathing automaticity in sleep. Phox2b(27Ala/+) mice that bear a frequent CCHS-causing mutation do not respond to hypercapnia and die in the first hour after birth from central apnoea. They are therefore a reliable animal model for CCHS. Neurons of the retrotrapezoïd nucleus/parafacial respiratory group (RTN/pFRG) were found severely depleted in these mice and no other neuronal loss could be identified. Physiological experiments show that RTN/pFRG neurons are crucial to driving proper breathing at birth and are necessary for central chemoreception and the generation of a normal respiratory rhythm. To date, the reason for the selective vulnerability of RTN/pFRG neurons to PHOX2B protein dysfunction remains unexplained.