Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 21(12), p. 4206, 2019

DOI: 10.3390/en12214206

Links

Tools

Export citation

Search in Google Scholar

Technoeconomic Assessment of Hybrid Organosolv–Steam Explosion Pretreatment of Woody Biomass

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study investigates technoeconomic performance of standalone biorefinery concepts that utilize hybrid organic solvent and steam explosion pretreatment technique. The assessments were made based on a mathematical process model developed in UniSim Design software using inhouse experimental data. The work was motivated by successful experimental applications of the hybrid pretreatment technique on lignocellulosic feedstocks that demonstrated high fractionation efficiency into a cellulose-rich, a hemicellulose-rich and lignin streams. For the biorefinery concepts studied here, the targeted final products were ethanol, organosolv lignin and hemicellulose syrup. Minimum ethanol selling price (MESP) and Internal rate of return (IRR) were evaluated as economic indicators of the investigated biorefinery concepts. Depending on the configuration, and allocating all costs to ethanol, MESP in the range 0.53–0.95 €/L were required for the biorefinery concepts to break even. Under the assumed ethanol reference price of 0.55 €/L, the corresponding IRR were found to be in the range −1.75–10.7%. Hemicellulose degradation and high steam demand identified as major sources of inefficiencies for the process and economic performance, respectively. Sensitivity of MESP and IRR towards the most influential technical, economic and market parameters performed.