Published in

F1000Research, F1000Research, (8), p. 1847, 2019

DOI: 10.12688/f1000research.20105.1

Links

Tools

Export citation

Search in Google Scholar

Podocyte RhoGTPases: new therapeutic targets for nephrotic syndrome?

Journal article published in 2019 by Moin A. Saleem ORCID, Gavin I. Welsh ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Podocytes, or glomerular epithelial cells, form the final layer in the glomerular capillary wall of the kidney. Along with the glomerular basement membrane and glomerular endothelial cells, they make up the glomerular filtration barrier which allows the passage of water and small molecules and, in healthy individuals, prevents the passage of albumin and other key proteins. The podocyte is a specialised and terminally differentiated cell with a specific cell morphology that is largely dependent on a highly dynamic underlying cytoskeletal network and that is essential for maintaining glomerular function and integrity in healthy kidneys. The RhoGTPases (RhoA, Rac1 and Cdc42), which act as molecular switches that regulate actin dynamics, are known to play a crucial role in maintaining the cytoskeletal and molecular integrity of the podocyte foot processes in a dynamic manner. Recently, novel protein interaction networks that regulate the RhoGTPases in the podocyte and that are altered by disease have been discovered. This review will discuss these networks and their potential as novel therapeutic targets in nephrotic syndrome. It will also discuss the evidence that they are direct targets for (a) steroids, the first-line agents for the treatment of nephrotic syndrome, and (b) certain kinase inhibitors used in cancer treatment, leading to nephrotoxicity.