Dissemin is shutting down on January 1st, 2025

Published in

Association for Computing Machinery (ACM), Proceedings of the ACM on Human-Computer Interaction, CSCW(2), p. 1-18, 2018

DOI: 10.1145/3274413

Links

Tools

Export citation

Search in Google Scholar

The Spirit of the City

Journal article published in 2018 by Miriam Redi, Luca Maria Aiello, Rossano Schifanella, Daniele Quercia ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Place ambiance has a huge influence over how we perceive places. Despite its importance, ambiance has been crucially overlooked by urban planners and scientists alike, not least because it is difficult to record and analyze at scale. We explored the possibility of using social media data to reliably map the ambiance of neighborhoods in the entire city of London. To this end, we collected geo-referenced picture tags from Flickr and matched those tags with the words in a newly created ambiance dictionary. In so doing, we made four main contributions: i) map the ambiance of London neighborhoods; ii) ascertain that such a mapping meets residents' expectations, which are derived from a survey we conducted; iii) show that computer vision techniques upon geo-referenced pictures are of predictive power for neighborhood ambiance; and iv) explain each prediction of a neighborhood's ambiance by identifying the picture that best reflects the meaning of that ambiance (e.g., artsy) in that neighborhood (e.g., South Kensington---the richest and most traditional neighborhood---and Shoreditch---among the most progressive and hipster neighborhoods in the city---are both 'artsy' but in very different ways). The combination of the predictive power of mapping ambiance from images and the ability to explain those predictions makes it possible to discover hidden gems across the city at an unprecedented scale.