Published in

IOP Publishing, 2D Materials, 1(7), p. 015022, 2019

DOI: 10.1088/2053-1583/ab57ef

Links

Tools

Export citation

Search in Google Scholar

Anisotropic infrared light emission from quasi-1D layered TiS 3

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Atomically thin semiconductors hold great potential for nanoscale photonic and optoelectronic devices because of their strong light absorption and emission. Despite progress, their application in integrated photonics is hindered particularly by a lack of stable layered semiconductors emitting in the infrared part of the electromagnetic spectrum. Here we show that titanium trisulfide (TiS3), a layered van der Waals material consisting of quasi-1D chains, emits near infrared light centered around 0.91 eV (1360 nm). Its photoluminescence exhibits linear polarization anisotropy and an emission lifetime of 210 ps. At low temperature, we distinguish two spectral contributions with opposite linear polarizations attributed to excitons and defects. Moreover, the dependence on excitation power and temperature suggests that free and bound excitons dominate the excitonic emission at high and low temperatures, respectively. Our results demonstrate the promising properties of TiS3 as a stable semiconductor for optoelectronic and nanophotonic devices operating at telecommunication wavelengths.