Published in

MDPI, International Journal of Molecular Sciences, 21(20), p. 5478, 2019

DOI: 10.3390/ijms20215478

Links

Tools

Export citation

Search in Google Scholar

Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines

Journal article published in 2019 by Yixuan Hou ORCID, Qiuhong Wang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in China in 2010. It infects pigs of all ages, and causes severe diarrhea and high mortality rates in newborn pigs, leading to devastating economic losses in the pork industry worldwide. Effective and safe vaccines against highly virulent PEDV strains are still unavailable, hampering the further prevention, control and eradication of the disease in herds. Vaccination of pregnant sows with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows, which provides A passive protection of suckling piglets against PEDV via the colostrum (beestings, or first milk) and milk. Several LAV candidates have been developed via serially passaging the highly virulent PEDV isolates in non-porcine Vero cells. However, their efficacies in the induction of sufficient protection against virulent PEDV challenge vary in vivo. In this review, we summarize the current knowledge of the virulence-related mutations of PEDV and their potential roles in PEDV attenuation in vivo. With the successful development of reverse genetics systems for PEDV, we also discuss how to use them to generate promising LAV candidates that are safe, effective and genetically stable. This article provides timely insight into the rational design of effective and safe PEDV LAV candidates.