Published in

Wiley, Molecular Microbiology, 1(21), p. 123-131

DOI: 10.1046/j.1365-2958.1996.6231339.x

Links

Tools

Export citation

Search in Google Scholar

Fate of peptides in peptidase mutants of Lactococcus lactis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The utilization of exogenous peptides was studied in mutants of Lactococcus lactis in which combinations of the peptidase genes pepN, pepC, pepO, pepX and pepT were deleted. Multiple mutants lacking PepN, PepC, PepT plus PepX could not grow on peptides such as Leu–Gly–Gly, Gly–Phe–Leu, Leu–Gly–Pro, Ala–Pro–Leu and Gly–Leu–Gly–Leu, respectively, indicating that no other peptidases are present to release the essential amino acid Leu. In these mutants, peptides accumulate intracellularly, demonstrating that peptides are translocated as whole entities prior to degradation. The mutant lacking all five peptidases could still grow on Gly–Leu and Tyr–Gly–Gly–Phe–Leu, which confirmed the presence of a dipeptidase and led to the identification of an unknown PepO-like endopeptidase. These studies have also shown that the general aminopeptidases PepN, PepC and PepT have overlapping but not identical specificities and differ in their overall activity towards individual peptides. In contrast, PepX has an unique specificity, because it is the only enzyme which can efficiently degrade Ala–Pro–Leu. The concerted action of peptidases in the breakdown of particular peptides revealed how these substrates are utilized as sources of nitrogen.