Dissemin is shutting down on January 1st, 2025

Published in

Mineralogical Society of America, American Mineralogist, 11(104), p. 1603-1607, 2019

DOI: 10.2138/am-2019-7081

Links

Tools

Export citation

Search in Google Scholar

Melting in the Fe-FeO system to 204 GPa: Implications for oxygen in Earth's core

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe performed melting experiments on Fe-O alloys up to 204 GPa and 3500 K in a diamond-anvil cell (DAC) and determined the liquidus phase relations in the Fe-FeO system based on textural and chemical characterizations of recovered samples. Liquid-liquid immiscibility was observed up to 29 GPa. Oxygen concentration in eutectic liquid increased from >8 wt% O at 44 GPa to 13 wt% at 204 GPa and is extrapolated to be about 15 wt% at the inner core boundary (ICB) conditions. These results support O-rich liquid core, although oxygen cannot be a single core light element. We estimated the range of possible liquid core compositions in Fe-O-Si-C-S and found that the upper bounds for silicon and carbon concentrations are constrained by the crystallization of dense inner core at the ICB.