Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-12900-4

Links

Tools

Export citation

Search in Google Scholar

Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWearable and portable self-powered units have stimulated considerable attention in both the scientific and technological realms. However, their innovative development is still limited by inefficient bulky connections between functional modules, incompatible energy storage systems with poor cycling stability, and real safety concerns. Herein, we demonstrate a flexible solar-charging integrated unit based on the design of printed magnesium ion aqueous asymmetric supercapacitors. This power unit exhibits excellent mechanical robustness, high photo-charging cycling stability (98.7% capacitance retention after 100 cycles), excellent overall energy conversion and storage efficiency (ηoverall = 17.57%), and outstanding input current tolerance. In addition, the Mg ion quasi-solid-state asymmetric supercapacitors show high energy density up to 13.1 mWh cm−3 via pseudocapacitive ion storage as investigated by an operando X-ray diffraction technique. The findings pave a practical route toward the design of future self-powered systems affording favorable safety, long life, and high energy.