Published in

Current Biochemical Engineering, 1(5), p. 57-68, 2019

DOI: 10.2174/2212711906666190710181629

Links

Tools

Export citation

Search in Google Scholar

Influence of Betaine- and Choline-based Eutectic Solvents on Lipase Activity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Eutectic solvents are a mixture of two compounds which possess a lower melting temperature than the parent compounds, using quaternary ammonium salts, such as choline chloride and betaine hydrochloride and organic acids, polyols and amides as hydrogen bond donors. These solvents can be an alternative as non-aqueous media for enzymatic reactions, mainly using lipases. Objective: The objective of this work is to evaluate enzymatic activity and stability of commercial lipases, immobilized or at free form (Thermomyces lanuginosus: Lipozyme TL IM, iTL and Lipolase 100 L, fTL; Candida antarctica: Novozym 435, iCALB; Novozym 735, iCALA and Novozym CALB L, fCALB); and a phospholipase (Lecitase Ultra), in the presence of eutectic solvents (choline chloride ChCl:urea, ChCl:glycerol, betaine hydrochloride (BeHCl):urea and BeHCl: glycerol. Methods: Initially, lipases were maintained for 2 hours in solutions of choline and betaine-based eutectic solvents (1 to 20% m/m) at 25ºC compared with water for relative enzymatic activity. Using the solvent that best promoted lipase activity, some parameters were evaluated such as the molar ratio between quaternary ammonium salts and urea, stocking temperature and kinetics. Results and Conclusion: These eutectic solvents enable, mainly with immobilized lipases, 25 to 125 times more activity than water at 25ºC and 2h, and even after 24h, lipase iTLL was still 40 times more active in the presence of ChCl:Urea 1:3. Lipase iCALB showed great thermostability 47 times higher at 55ºC, almost double relative activity at 25ºC in the presence of BetHCl:Urea 1:4.