Published in

Portland Press, Bioscience Reports, 1(39), 2019

DOI: 10.1042/bsr20181804

Links

Tools

Export citation

Search in Google Scholar

FBXL19-AS1 exerts oncogenic function by sponging miR-431-5p to regulate RAF1 expression in lung cancer

Journal article published in 2019 by Qian Jiang ORCID, Li Cheng, Daiyuan Ma, Yanli Zhao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Lung cancer is the leading cause of cancer-related mortality worldwide, characterized by uncontrolled proliferation and metastasis of lung cancer cells. Tumor angiogenesis plays a key role in proliferation and metastasis in cancers, and is an essential component in microenvironment. It has been reported that long non-coding RNA FBXL19-AS1 plays an oncogenic role in colorectal cancer. However, the molecular mechanism of FBXL19-AS1 in lung cancer has not been fully elucidated. In the present study, we found that FBXL19-AS1 expression was up-regulated in lung cancer tissues and cell lines. FBXL19-AS1 knockdown inhibited cell proliferation, migration, invasion, and angiogenesis in lung cancer cells. Molecular mechanism exploration uncovered that FBXL19-AS1 acted as a molecular sponge of miR-431-5p and that RAF1 was a downstream target of miR-431-5p in lung cancer. Moreover, there was a negative association between miR-431-5p expression and FBXL19-AS1 or RAF1 expression in tumor tissues. Through rescue experiments, we discovered that overexpression of RAF1 partially rescued FBXL19-AS1 knockdown-mediated inhibition of angiogenesis and progression in lung cancer. Together, these results indicated that FBXL19-AS1 was involved in progression and angiogenesis in lung cancer by targeting miR-431-5p/RAF1 axis, which provided a new insight into the therapeutic strategies of lung cancer.