Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 14(276), p. 10782-10787, 2001

DOI: 10.1074/jbc.m010554200

Links

Tools

Export citation

Search in Google Scholar

Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We have obtained a full-length P type ATPase sequence (PfATP4) encoded by Plasmodium falciparum and expressed PfATP4 in Xenopus laevis oocytes to study its function. Comparison of the hitherto incomplete open reading frame with other Ca(2+)-ATPase sequences reveals that PfATP4 differs significantly from previously defined categories. The Ca(2+)-dependent ATPase activity of PfATP4 is stimulated by a much broader range of [Ca(2+)](free) (3.2-320 micrometer) than are an avian SERCA1 pump or rabbit SERCA 1a (maximal activity < 10 micrometer). The activity of PfATP4 is resistant to inhibition by ouabain (200 micrometer) or thapsigargin (0.8 micrometer) but is inhibited by vanadate (1 mM) or cyclopiazonic acid (1 microM). We used a quantitative polymerase chain reaction to assay expression of mRNA encoding PfATP4 relative to that for beta-tubulin in synchronized asexual stages and found variable expression throughout the life cycle with a maximal 5-fold increase in meronts compared with ring stages. This analysis suggests that PfATP4 defines a novel subclass of Ca(2+)-ATPases unique to apicomplexan organisms and therefore offers potential as a drug target.