Published in

Nature Research, Nature Communications, 1(10), 2019

DOI: 10.1038/s41467-019-12885-0

Links

Tools

Export citation

Search in Google Scholar

Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-efficiency water electrolysis is the key to sustainable energy. Here we report a highly active and durable RuIrOx (x ≥ 0) nano-netcage catalyst formed during electrochemical testing by in-situ etching to remove amphoteric ZnO from RuIrZnOx hollow nanobox. The dispersing-etching-holing strategy endowed the porous nano-netcage with a high exposure of active sites as well as a three-dimensional accessibility for substrate molecules, thereby drastically boosting the electrochemical surface area (ECSA). The nano-netcage catalyst achieved not only ultralow overpotentials at 10 mA cm−2 for hydrogen evolution reaction (HER; 12 mV, pH = 0; 13 mV, pH = 14), but also high-performance overall water electrolysis over a broad pH range (0 ~ 14), with a potential of mere 1.45 V (pH = 0) or 1.47 V (pH = 14) at 10 mA cm−2. With this universal applicability of our electrocatalyst, a variety of readily available electrolytes (even including waste water and sea water) could potentially be directly used for hydrogen production.